

Experiment HH-1: The Electrocardiogram and Peripheral Circulation

Exercise 1: The ECG and the Pulse in a Resting Subject

Aim: To measure and correlate the ECG and the pulse in a resting individual.

Approximate Time: 15 minutes

Procedure

1. Click on the Record button, located on the upper right side of the LabScribe Main window ([Figure HH-1-L1](#)). The signal should begin scrolling across the screen.
2. Click on the AutoScale button at the upper margin of the ECG, Pulse, and Pulse Integral channels. Your recording should look like [Figure HH-1-L2](#).
 - If the signal on either the ECG or the Pulse channel is upside down when compared to trace, click on the downward arrow to the left of the channel title and select the Invert function. The trace should now look similar to the one in the figure.
 - If a larger ECG signal is required, the electrodes should be moved from the wrists to the skin immediately below each clavicle.
 - If the pulse signal is small or noisy, adjust the tension on the strap holding the pulse plethysmograph to the finger.
3. When you have a suitable trace, type <Subject's Name> Resting ECG/Pulse in the Mark box to the right of the Mark button. Press the mark button to attach the comment to the data. Record for a minute or two.
4. Click Stop to halt recording.

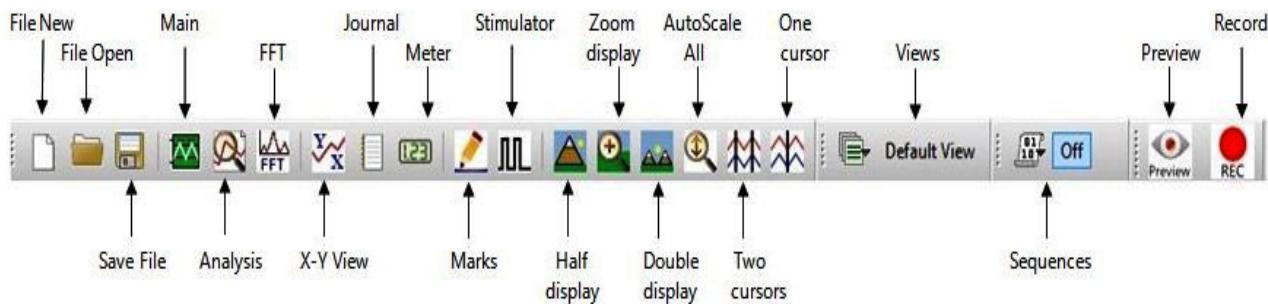


Figure HH-1-L1: The LabScribe toolbar.

Figure HH-1-L2: ECG, pulse, and pulse integral displayed on the Main window. The arrow is placed above a dichrotic notch.

5. Select Save As in the File menu, type a name for the file. Click on the Save button to save the data file.

Data Analysis

1. Scroll through the recording and find a section of data with 10 exemplary ECG/pulse cycles in succession.
2. Use the Display Time icons to adjust the Display Time of the Main window to show the complete ECG/Pulse cycles on the Main window.
3. Data can be collected from the Main window or the Analysis window. If you choose to use the Analysis window, click on the Analysis window icon in the toolbar.
4. The mathematical functions, V_2-V_1 and T_2-T_1 should appear on screen. Values for V_2-V_1 and T_2-T_1 on each channel are seen in the table across the top margin of each channel, or to the right of each graph.
5. Once the cursors are placed in the correct positions for determining the time intervals on each ECG/Pulse cycle, the values of the time intervals can be recorded in the on-line notebook of LabScribe by typing their names and values directly into the Journal, or on a separate data table.

6. The functions in the channel pull-down menus of the Analysis window can also be used to enter the names and values of the parameters from the recording to the Journal. To use these functions:

- Place the cursors at the locations used to measure the amplitudes and period of the ECG/Pulse cycle.
- Transfer the names of the mathematical functions used to determine the amplitudes and time interval to the Journal using the Add Title to Journal function in the ECG Channel pull-down menu.
- Transfer the values for the amplitudes and beat period to the Journal using the Add Ch. Data to Journal function in the ECG Channel pull-down menu.

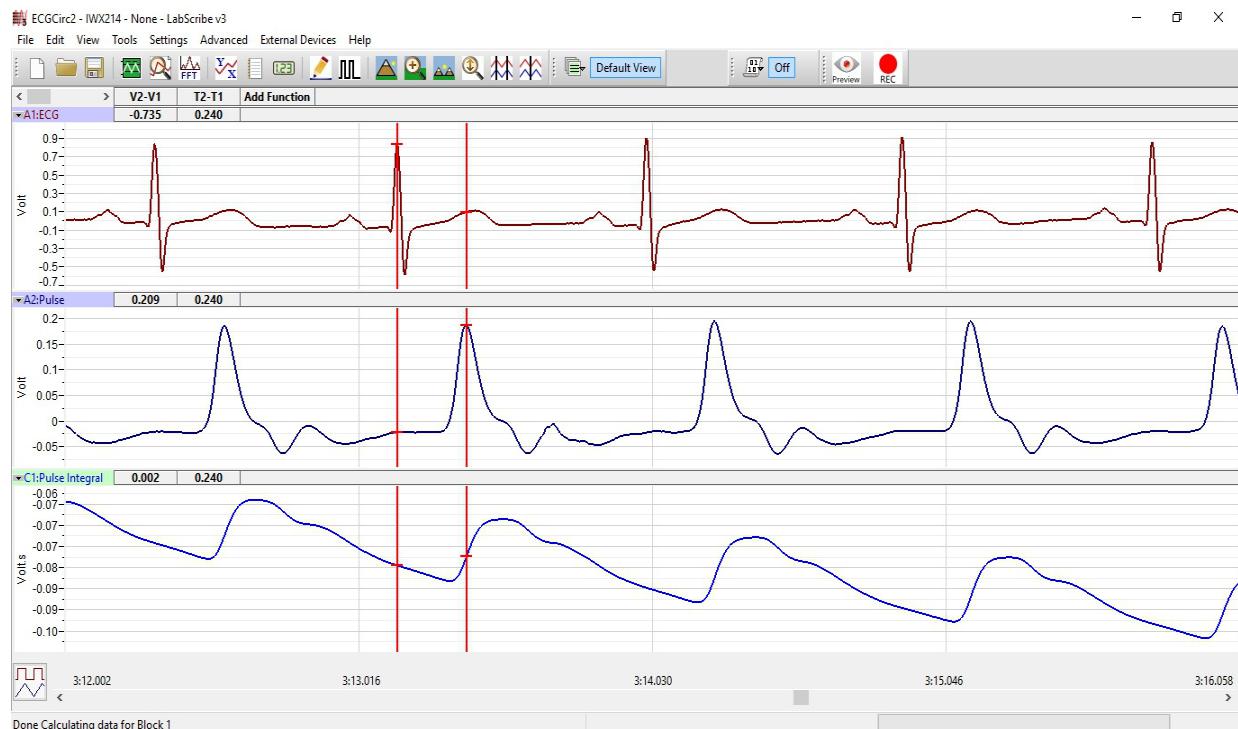


Figure HH-1-L3: ECG, pulse and pulse integral displayed on the Analysis window with cursors in place to measure the R-Pulse interval with the T2-T1 function.

7. Use the mouse to click on and drag the cursors to specific points on the ECG/Pulse recording to measure the following (measure at least 5 ECG cycles):

- The beat period, which is the time interval between two adjacent R waves. Place one cursor on the peak of an R wave and the second cursor on the peak of the adjacent R wave. The value for T2-T1 on the ECG channel is the beat period.
- The R-Pulse interval, which is the time interval between the peak of the R wave and the peak of the pulse wave that follows the R wave. Place one cursor on the peak of an R wave and the second cursor on the peak of the pulse wave to its right. The value for T2-T1 is this interval.

8. Calculate the following values and record your results into the Journal or on a separate data table:

- The average beat period, in seconds/beat.
- The heart rate, which is expressed in beats per minute and calculated from the average beat period by using the following equation:
- Heart Rate (beats/minute) = $\frac{60 \text{ seconds/minute}}{\# \text{ seconds/beat}}$
- The average R-Pulse interval.

Questions

1. What electrical and mechanical events take place during the R wave?
2. What events take place in the cardiovascular system during the R and pulse waves?
3. The signal recorded on the Pulse channel is rate of change of the blood pressure entering the subject's finger tip. When this signal is integrated, the waveform displayed on Pulse Integral channel is similar to an arterial pressure curve. Is there a short plateau or dip during each cycle displayed on the Pulse Integral channel? This plateau or dip is called the dichrotic notch. If you optimized the tension on the plethysmograph strap to record a large, clean pulse wave from your subject, you should see a dichrotic notch on the Pulse Integral channel.
4. What event recorded on the Pulse channel corresponds to the dichrotic notch? What causes a dichrotic notch?

Exercise 2: The ECG and the Pulse in Other Subjects

Aim: To measure and correlate the ECG and the pulse in other subjects.

Approximate Time: 15 minutes per subject

Procedure

Repeat Exercise 1 on other subjects.

Data Analysis

Analyze the data for each subject using the same techniques used in Exercise 1.

Questions

1. Is the time interval between the R wave and the peak of the pulse wave the same for each subject? Does this time interval differ with heart rate?
2. Do you see any differences in the size or shape of dichrotic notches from different subjects? Remember: the tension on the plethysmograph strap affects the shape of the pulse recording.
3. Is the time interval between the peak of the pulse wave and the bottom of the dichrotic notch the same for each subject?
4. What factors would affect the shape or position of the dichrotic notch?

Exercise 3: The Effect of Cold on the Pulse

Aim: To measure the effects of cold on the pulse and heart rate.

Approximate Time: 30 minutes

Procedure

1. Attach the plethysmograph to the middle finger of the subject's left hand. Instruct the subject to sit quietly with their hands in their lap.
2. Click on the Record button. The signal should begin scrolling across the screen.
3. Click on the AutoScale button at the upper margin of the ECG, Pulse, and Pulse Integral channels. Your recording should look like [Figure HH-1-L4](#). Use the same techniques used in Exercise 1 to display the signals properly.
4. When you have a suitable trace, type <Subject's Name> RoomTempECG/Pulse in the Mark box to the right of the Mark button. Press the mark button to attach the comment to the data. Record for a minute or two.
5. Type Cold ECG/Pulse in the Mark box to the right of the Mark button. Place a bag containing a mixture of ice and cold water on the subject's left forearm. At the same time, press the mark button to attach the comment to the data. Record for two minutes while the cold pack is on the subject's forearm.
6. Type Remove in the Mark box. Simultaneously remove the ice bag and press the mark button.
7. Record for an additional two minutes; then, click Stop to halt recording.
8. Select Save in the File menu on the LabScribe window.

Data Analysis

1. Analyze the data using the same techniques used in Exercise 1.
2. Use the mouse to click on and drag the cursors to specific points on the ECG/Pulse recording to measure the following:
 - The pulse wave amplitude. To measure the pulse wave amplitude, place one cursor on the baseline that precedes the pulse wave and the second cursor on the peak of the pulse wave. The value for V2-V1 on the Pulse channel is this amplitude. Determine the pulse amplitude for three pulse waves.
 - The beat period. Measure the time between two adjacent R waves using the same technique employed in Exercises 1 and 2. Determine the beat period for three ECG/Pulse cycles.
 - The R-Pulse interval. Measure the time between the peak of the R wave and the peak of the pulse wave using the same technique employed in Exercises 1 and 2. Determine this interval for three ECG/Pulse cycles.



Figure HH-1-L4: ECG, pulse and pulse integral displayed on the Analysis window with cursors in place to measure the pulse amplitude with V2-V1 function.

3. Repeat Steps 5 and 6 for the data at 1 and 2 minutes into the cooling period, and at 1 and 2 minutes into the rewarming period
4. Calculate the following values and type your results into the Journal or on a separate data table:
 - The average pulse wave amplitude while the forearm was at room temperature, cooled for 1 and 2 minutes, or rewarmed for 1 and 2 minutes.
 - The heart rate while the forearm was at room temperature, cooled for 1 and 2 minutes, or rewarmed for 1 and 2 minutes.
 - The average R-Pulse interval while the forearm was at room temperature, cooled for 1 and 2 minutes, or rewarmed for 1 and 2 minutes.

Questions

1. What effect does cooling have on the amplitude of the pulse wave?
2. Does cooling of the forearm affect the heart rate, or the time interval between the R wave and the peak of the pulse wave?
3. Through what mechanism does cooling affect the peripheral circulation?
4. What other factors may affect peripheral circulation?

Exercise 4: The Effect of Heat on the Pulse

Aim: To measure the effects of heat on the pulse and heart rate.

Approximate Time: 30 minutes

Procedure

1. Move the plethysmograph to the middle finger or thumb of the subject's right hand.
2. Follow the directions used in Exercise 3 to do an experiment on the right forearm of the subject with a bag of warm water. Mark the recording to indicate when the bag of warm water was applied and removed from the forearm.

Questions

1. What effect does warming have on the amplitude of the pulse wave?
2. Does warming of the forearm affect the heart rate, or the time interval between the R wave and the peak of the pulse wave?
3. Through what mechanism does warming affect the peripheral circulation?